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Preferences, Actions, and Choices

› The model for rational choice we’ve been working with from lecture 2 is one where a
player makes a choice about an action to perform against the background of some
unknown state of nature.

› The values assigned to outcomes and the probabilities assigned to those states dictated
the agent’s preferences among actions.

› We saw that this model faced some difficulties in cases of strategic interaction, such
as the ‘Israeli War’ example (Bar‐Hillel and Margalit 1972).
» A strategic interaction is one where the relevant states of nature are the unknown choices

of other rational agents.
› We briefly investigated using conditional probabilities to model rational choice in
such cases, but for many preference‐first theorists in economics and elsewhere, this
reification of probabilities and values is both problematic and unnecessary.
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Game Theory

› It is unnecessary, they say, because there is a model of strategic interaction where all
you need to know is the preferences of the interacting players for outcomes – no
probabilities required.
» It may be argued that the assignment of conditional probabilities in the Israeli War example

presupposes such knowledge of preferences: the reason that war ismore likely if Israel
remains is because Egypt prefers war to peace in that case.

› Game theory is the theory of rational choice amongst actions when competing against
other rational agents, and where what is rational for you might depend on their choices
– in which case, the actions are called strategies.

› The idea is that we can generate normative principles, and descriptive predictions for
rational agents, by considering the structure of preferences alone.
» There is a potential here for a clash with individual decision theory: we return to this issue

below.
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The Structure of a Game
› A game has:

1. Players who interact; these may be individuals or not, and there may be any number more
than 2;

2. Strategies which each players adopt for the whole game, though these can be conditional,
varying in the choice depending on the actions of other players;

3. Outcomes for each player, which emerge from the strategies each have chosen; in simple
games, the strategies fully determine the outcomes.

4. Pay‐offs for each player in each outcome, that represent, perhaps indirectly, the value they
get from that outcome being realized; these are dictated by the player’s preferences over
outcomes.

› In order for an interaction to be a game, it needs to be assumed that all the players
know they are playing a game, and which game it is.

› There may be no rational strategy if you can’t rely on other players playing the game. So
we usually assume something stronger: common knowledge of rationality, namely,
that every player knows the game they are playing, that every player knows this of every
player; that every player also knows that every player knows this of every player; and so
on ad infinitum.
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A Simple Game
› Suppose two players are trying to decide which concert to go to. They make individual
choices between Mozart and Mahler and each prefers Mozart to Mahler.

› Let’s assume they make their choices simultaneously, so (in effect) they reveal their
strategies to one another once the outcome is realized (perhaps they just turn up to
their chosen concert and see if the other is present).

› This is not a ‘sequential’ game, and can be represented in strategic form (Reiss 2013:
57–59), as follows:

Table 1: Mozart or Mahler?

1↓ / 2→ Mozart Mahler

Mozart (2, 2) (1, 0)
Mahler (0, 1) (0, 0)

› Going to the Mozart concert is the best outcome for each – i.e., it is best for all if the
collection of strategies {1 goes to Mozart, 2 goes to Mozart} is realized.
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Nash Equilibria; or, No Regrets
› One way to see that the {Mozart, Mozart} strategy is good for all jointly is to consider
whether the players would have regrets once they see what the chosen strategies
turned out to be.

› Suppose 1 went for Mahler, and 2 went for Mozart. Then 1 would have regret; given what
2 actually did, 1 would have preferred to go to Mozart. Suppose both go to Mahler; that’s
better for each than going to Mahler alone, but both would have regret.

› A set of strategies where no one would have regrets given that the other players played
strategies in that set is a Nash equilibrium of the game (Reiss 2013: 57): that is, a set of
strategies

such that each player’s … strategy maximises his pay off if the strategies of
the others are held fixed. (Peterson 2017: 241; see also Reiss 2013: 58)

» {Mozart, Mozart} is a Nash equilibrium; each player is happy to have played what they did,
given what the others did.

» This is the unique Nash equilibrium; so, we might say, it is the only way to avoid regret
when you find out what strategy the other player adopted, and hence is the rationally
mandatory act (Reiss 2013: 56).
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Modified Mozart or Mahler
› A game with a Nash equilibrium need not have just one.
› Suppose we modify the pay‐offs for player 1 and player 2 in Mozart or Mahler, so that
now each would prefer to go together than separately:

Table 2: Modified Mozart or Mahler? (Osborne and Rubinstein 1994: 16)

1↓ / 2→ Mozart Mahler

Mozart (2, 2) (0, 0)
Mahler (0, 0) (1, 1)

› Here the solution {Mahler, Mahler} is also a Nash equilibrium: if player 2 plays Mahler,
player 1 will prefer to have played Mahler; likewise, if player 1 plays Mahler, player 2 will
prefer to have played Mahler too.

› So while both players will prefer to go together to the Mozart concert, the also prefer
each other’s company to Mozart alone.

› What should players do in this case?
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Game Solutions and Nash Equilibria

› A game solution is a set of strategies that rational players will (or would) jointly play –
because it is what they would do, there can be only one game solution.

› There is widespread agreement that rational players will jointly converge on some
Nash equilibrium: no one could rationally have regrets.
» So any game solution must be a Nash equilibrium.

› But as we just saw, there is no guarantee that there is only one Nash equilibrium, so if
there is a game solution in such a game, then some Nash equilibrium is not a game
solution.
» {Mozart, Mozart} might be the unique solution in Modified Mozart or Mahler without being

a unique Nash equilibrium.
› Maybe it is Pareto optimality that makes for a unique solution here (Reiss 2013: 68)?

» An outcome 𝑋 is a Pareto improvement over 𝑌 iff someone strictly prefers 𝑋 to 𝑌, and no
one strictly prefers 𝑌 to 𝑋. An outcome is Pareto optimal/efficient iff there is no outcome
that is a Pareto improvement over it.
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Easy cases
› In the original Mozart or Mahler case, the unique Nash equilibrium is the best outcome
for all, so individual and jointly rationality converge.
» Going to the Mozart concern is the dominant strategy for each player, as well as being in the

Nash equilibrium.
› And we can also imagine a case where there is no Nash equilibrium: no matter what,
someone will regret their choice, and hence there is no jointly rational strategy (though
individually rational choices might still exist).

Table 3: Love and Loathe

1↓ / 2→ Café Bar

Café (2, 1) (1, 2)
Bar (1, 2) (2, 1)

› In Love and Loathe, whatever player 2 does, player 1 wants to do; but whatever player 1
does, player 2 wants to the do the opposite.
» This is a strictly competitive game, one ‘where the interests of the two players are

diametrically opposed’ (Osborne and Rubinstein 1994: 17). Another example is
Rock‐Paper‐Scissors (Reiss 2013: 61).
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Cooperation and Rational Choice
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Cooperation and Strategy
› Any moral theory faces a fundamental ethical question: why be moral?
› Game theory promises a partial answer: it is sometimes rational to engage in
pro‐social and cooperative behaviour.
» Compared to individual decision theory, where everyone is invited to consider only their

own self‐interest, in game theoretic analyses the players are forced to consider each other
as rational agents. There is something fundamentally interpersonal and other‐regarding in
game solutions that makes it apt to speak of morality in this context.

› Can cooperation rationally emerge from strategic interaction (Skyrms 1996)? In Rich
Friend (below), the unique Nash equilibrium involves player 1 opting to go to a café
which has a lower average payoff for them than going to a fine dining restaurant; in that
sense, they sacrifice their self‐interest to get a good joint outcome.

Table 4: Rich Friend

1↓ / 2→ Café Fine dining

Café (4, 4) (1, 0)
Fine dining (3, 2) (6, 1)
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The Stag Hunt
› A small tweak on Mozart‐or‐Mahler gives us the Stag Hunt:

Table 5: Stag Hunt

1↓ / 2→ Hunt Stag Hunt Hare

Hunt Stag (5, 5) (0, 2)
Hunt Hare (2, 0) (1, 1)

› This game gets its name from a passage in Rousseau:

If it was a matter of hunting a deer, everyone well realized that he must
remain faithful to his post; but if a hare happened to pass within reach of
one of them, we cannot doubt that he would have gone off in pursuit of it
without scruple…. (Rousseau 1761: 111)

› The idea is that in this game there is a big payoff to collaborative behaviour, but there is
also some temptation or propensity to defect, which has its rewards for the defector, but
not for the abandoned cooperator.
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Risk and Payoff Dominance

› In the Stag Hunt, there are two Nash equilibria: {Stag, Stag} and {Hare, Hare}. Unlike
Rich Friend, merely discovering a Nash equilibrium doesn’t solve this game. How do we
choose?

› {Stag, Stag} is payoff dominant: it is Pareto‐superior to all other Nash equilibria.
› {Hare, Hare} is risk dominant: ‘A player who chooses to hunt hare runs no … risk, since
his payoff does not depend on the choice of action of the other player’ (Skyrms 2001: 32).

› If one is confident of the other player’s rationality, one ought to hunt stag: that is the
Nash equilibrium with the highest payoff for both agents.

› But if one is unsure of the other – if one thinks them flightly, or subject to short‐term
tempation – then one ought to bear risk in mind, and choose the act that leads to the
risk dominant equilbrium.

› If 1 is certain that 2 will hunt stag, so should 1; likewise, if either suspects the other will
hunt hare (either by mistake or by defecting from the cooperative arrangement), they
should hunt hare also.
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William James on Trust in Society

› If these players can trust one another, they can get their most desired outcome. If they
are suspicious of the other, they should act so as to secure the hare – the problem there
of course is that act guarantees there will be no trust.

A social organism of any sort whatever, large or small, is what it is because
eachmember proceeds to his own duty with a trust that the othermembers
will simultaneously do theirs. Wherever a desired result is achieved by the
co-operation of many independent persons, its existence as a fact is a pure
consequence of the precursive faith in one another of those immediately
concerned. A government, an army, a commercial system, a ship, a college,
an athletic team, all exist on this condition, withoutwhich not only is nothing
achieved, but nothing is even attempted. (James 1896: §9)

› The Stag Hunt illustrates James’ concerns well – the central issue is how to ensure that
the lack of faith of the risk‐averse doesn’t prevent the socially optimal (and Pareto
optimal) outcome from being rationally chosen.
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The Prisoner’s Dilemma

Tanya and Cinque have been arrested for robbing the Hibernia Savings Bank
and placed in separate isolation cells. Both care much more about their per-
sonal freedom than about the welfare of their accomplice. A clever prosecutor
makes the following offer to each. ‘You may choose to confess or remain silent.
If you confess and your accomplice remains silent I will drop all charges against
you and use your testimony to ensure that your accomplice does serious time.
Likewise, if your accomplice confesses while you remain silent, they will go free
while you do the time. If you both confess I get two convictions, but I’ll see to
it that you both get early parole. If you both remain silent, I’ll have to settle for
token sentences on firearms possession charges. If you wish to confess, you
must leave a note with the jailer before my return tomorrow morning.’ (Kuhn
2019)

› A simpler version: Each player decides, in isolation and simultaneously, whether they will
receive 10 dollars or the other player will receive 20 dollars.
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The Prisoner’s Dilemma Game
› This puzzle has something like the following pay‐off matrix (Reiss 2013: 56):

Table 6: Prisoner’s Dilemma

Tanya↓ / Cinque→ Stonewall Confess

Stonewall (2, 2) (0, 3)
Confess (3, 0) (1, 1)

› The unique Nash equilibrium is that each confesses.
» If someone stonewalls, the other will regret not confessing.

› The problem: the equilibrium strategies {Confess, Confess} are jointly not very
attractive.

› They could do better by acting cooperatively with each other by staying silent –
indeed, {Stonewall, Stonewall} is a Pareto‐improvement on the Nash equilibrium, and is
Pareto optimal.
» Of course, the {Stonewall, Confess} and {Confess, Stonewall} strategies are also Pareto

optimal, but are not a Pareto improvement on the Nash equilibrium, so we don’t discuss
them. 18 / 42



Instability of Cooperation
› In Stag Hunt, cooperation is fragile. In the Prisoner’s dilemma, it seems rationally
unobtainable:

one might say that a PD is a game in which a ‘cooperative’ outcome obtain-
able only when every player violates rational self-interest is unanimously
preferred to the ‘selfish’ outcome obtained when every player adheres to
rational self-interest. (Kuhn 2019: §3)

› So why can’t players just agree to cooperate?
› Here the Nash equilibrium gets some bite: for if the players cooperate, both will regret
not defecting, given what the other player did: ‘unless there is external enforcement …
the incentives are strong not to honour the agreement’ (Reiss 2013: 64).

This influential argument runs as follows: Nash Equilibria are recommen-
ded by being the only strategy combinations on which the players could
make self-enforcing agreements, i.e., agreements that each has reason
to respect, even without external enforcement mechanisms. (Risse 2000:
366)
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Self-Enforcement and Rational Decision

Table 7: A non‐self‐enforcing Nash equilibrium (Risse 2000: 366)

1↓ / 2→ Left Centre Right

Top (4,6) (5,4) (0,0)
Middle (5,7) (4,8) (0,0)
Bottom (0,0) (0,0) (1,1)

› In this game, {Bottom, Right} is the Nash equilibrium (any strategy other than Bottom
or Right, and 1 or 2 will have regrets).

› But they should have regrets anyway, since if 1 had played any stratey other than
Bottom, they would have done better if 2 has played any strategy other than Right.
» Think about things this way: playing Not‐Right pays off at least 4 for 2, and playing

Not‐Bottom pays off at last 4 for 1. So why can’t mutually rational agents see that the
‘collapsed’ game is like modified Mozart or Mahler, and thus opt for a Pareto improvement,
which they get regardless of how {Not‐Bottom, Not‐Right} is implemented (Reiss 2013: 64)?
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Collective Action
› Many people have found Stag Hunt and Prisoner’s dilemmas present in problems
around public goods (lecture 10): those that are non‐excludable (access uncontrolled
once the good exists) and non‐rivalrous (my use doesn’t diminish availability).
» E.g., national defence, road safety, or clean air.

› Consider the tragedy of the commons:
Picture a pasture open to all. It is to be expected that each herdsmanwill try
to keep as many cattle as possible on the commons. … the rational herds-
man concludes that the only sensible course for him to pursue is to add
another annimal to his herd. And another; and another…. But this is the
conclusion reached by each and every rational herdsman sharing a com-
mons. Therein the tragedy. Each man is locked into a system that compels
him to increase his herd without limit—-in a world that is limited. Ruin is the
destination toward which all men rush, each pursuing his own best interest
in a society that believes in the freedom of the commons. (Hardin 1968:
1244)
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The Tragedy of the Commons
Table 8: A tragedy of the commons (Kuhn 2019: §5)

1↓ / 2→ Moderate Overstocking

Moderate (2, 2) (0, 3)
Overstocking (3, 0) (1, 1)

› In this game, each player can choose to pursue moderate usage of the commons, or
overstocking it. Of the two Nash equilibria, the moderate usage one is better for both.
But if they end up there, a lot of common grass goes unused, and overstocking is
individually better – a short term windfall to the first mover who can get their herd
onto the commons quickly. So it looks rational to end up with the despoiled commons.
» This is generally an 𝑛‐player game, for large 𝑛.

› So phrased, this is a prisoner’s dilemma. But it may turn into a Stag Hunt, as the
commons is despoiled and the advantages of overstocking diminish.
» That doesn’t mean cooperation is easier to establish; a population of longstanding

non‐cooperators might well suspect one another of being untrustworthy.
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Coordination and Conflicting Interests

› So far we’ve seen cases where
1. There is a best outcome for all, and it is a Nash equilibrium (original Mozart‐or‐Mahler).
2. There is a best outcome for all, but it is not a Nash equilibrium (Prisoner’s dilemma).
3. There is a best outcome for all, but there is more than one Nash equilibrium (Stag Hunt).
4. There is no best outcome for all, and no Nash equilibrium (Love and Loathe).

› We can also imagine a case where there is no best outcome for all but there is a Nash
equilibrium:

Table 9: Never drink alone (aka ‘Battle of the sexes’)

1↓ / 2→ Beer Wine

Beer (2, 1) (0, 0)
Wine (0, 0) (1, 2)
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How can we coordinate?

› In Never Drink Alone, the players want to drink the same thing as each other, but each
wants a different drink. How will they ever reach one of the Nash equilibria?

› The assumption that both players are rational and have common knowledge of
rationality gives trouble, because the symmetry of the pay‐offs makes coordination
difficult (Peterson 2017: 245–46).
» If opting for beer is 1’s best strategy, then 2 will opt for wine, for the same reason. Likewise if

1 should opt for wine, 2 will opt for beer.
› To break the symmetry we could use probabilities: maybe beer is just more available,
so it will be more likely that each player stumbles across some beer to drink. Or if we
knew that 2 is such a fanatical wine drinker that they will play the Wine strategy no
matter what.
» Both of these involve again essentially giving up on the game theoretical approach – the

second doesn’t even have rational players!
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Coordination from Self-Enforcement
A self-enforcing agreement is one that provides incentives for the agents to stick
to it even in the absence of external enforcement mechanisms. (Risse 2000:
368)

› Considerations of risk, just like those in Stag Hunt, might provide incentives that secure
coordination even without agreement or a Nash Equilibrium.

› If we adopt the Risse definition, then this game is one where players have incentives to
cooperate despite having better options if they do. But if they’ve agreed on the
compromise, they have some reason to think they will stick to it, and that might be
enough to support the otherwise fragile cooperative outcome.

Table 10: Don’t risk defecting (Risse 2000: 368)

1↓ / 2→ Defect Cooperate

Defect (0, 0) (4, 2)
Cooperate (2, 4) (3, 3)
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A Clash With Decision Theory?
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Israel/Egypt War Revisited
› Recall the Israeli/Egypt war example from lecture 3.
› If we now treat this as a strategic interaction, where Egypt is deciding on a military
strategy and Israeli is deciding on an occupation strategy, we get the following pay‐offs:

Table 11: Israel/Egypt revisited

Israel↓ / Egypt→ War Peace

Occupy (1, 1) (3, 0)
Withdraw (0, 3) (2, 2)

› This is a Prisoner’s dilemma!
» The unique Nash equilibrium is {Occupy, War}, but again, there is a Pareto improvement

available, namely, {Withdraw, Peace}.

› Applying game theoretic reasoning suggests the non‐cooperative outcome is uniquely
rational.
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Two Rationalizations of Decision

› There is an immediate concern: as theories of rational choice, do game theory and
decision theory apply to the same choice situations – and if they do, what is the
guarantee that they provide compatible explanations?

› In our earlier treatment of the Israel/Egypt, we suggested that if we think that Israel’s
choice is correlated with Egypt’s choice (Bar‐Hillel and Margalit 1972: 296–97) – i.e.,
that occupation correlates with war, and withdrawal correlates with peace – then it can
be rational to adopt the preferred bundle of strategies.
» In effect, the correlations make the {Occupy,Peace} and {Withdraw,War} outcomes

negligible, and the choice then is easy.
› But then it looks like we can rationalize both cooperation and defection; how then does
rational choice theory explain actual behaviour, if it could explain either?
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Parallel or Overlapping Rationality?

› Perhaps game theory may not compete with rational choice theory; it may be thought
to apply in cases where we lack probability information.

› Perhaps this is forced on us in strategic interactions; some have argued that assigning
probabilities to outcomes of choices – as we did in giving a decision‐theoretic model of
Israel‐Egypt – is incompatible with seeing yourself and other players as deliberative
agents, and so would argue that the tools of decision theory simply do not apply to
strategic games (Levi 2007; but see Hájek 2016).

› Alternatively, standard approaches to decision theory might be thought to apply only
where we have act‐outcome independence, and game theory applies where we do not.

› Perhaps game theory and decision theory overlap, but actually give the same verdicts,
properly understood.

› Perhaps we ought to adapt our approach to Israel‐Egypt to the standard PD: : if the
other prisoner is very much like me, a replica (Kuhn 2019: §7), I can rationally
stonewall, because my choice then is between us both stonewalling and us both
confessing.
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Leaving Game Theory Behind
› This idea – play the probabilities of what the other player will do – leaves game theory
behind: this is really just maximising expected utility with act‐dependent probabilities.

› If players also have probability information about likely strategies, they don’t need to
reason strategically.

So what is the point of identifying the Nash equilibria? Why not treat
(non-cooperative) nonzero-sum games as individual decisions under risk?
(Peterson 2017: 243)

› Perhaps the idea is that reasoning strategically tells you the likely probabilities. But
does it? If I’ve got good evidence that my twin and I will act alike, then I know that we
are rationally choosing between only {Confess, Confess} and {Stonewall, Stonewall}.

› Applying individual rational choice theory however might also involve the complexities
of causal versus evidential decision theory: confessing dominates, and since my act
doesn’t causemy replica to act, I ought to confess.
» Prisoner’s dilemma might be a Newcomb Problem, ‘or rather, two Newcomb Problems side

by side, one per prisoner’ (Lewis 1979: 235; Bermudez 2013).
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Non-simultaneous Games
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Dynamic games, Repeated Games

› Maybe some of the artefacts of our analysis arise because we are considering too limited
a class of games.
» Very few games involve a simultaneous and irrevocable choice of strategy!

› Many games might be played repeatedly, and that allows strategies for each repetition
to possibly diverge from the rational strategy in one‐shot games.
» For example, repeated Stag Hunters might be able to build trust in cooperation through

repeated encounters with one another, thus making the optimal equilibrium possible.
› Strictly speaking, such evidence about the players of repeated games gives information
that goes beyond the available strategies and outcomes. But we can treat repeated
games as single temporally‐extended games with a larger space of strategies, which
opens up new possibilities for analysis – and new difficulties, unfortunately.
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Repetition and Cooperation

› In the prisoner’s dilemma, cooperation is difficult to secure because the ‘sucker’s
pay‐off’ for stonewalling is both a severe deterrent and a penalty for not foreseeing the
rational choice of your partner in confessing.

› Note however that if you both stonewall, you get a desirable pay‐off; and if you play
repeatedly, you can establish a relationship that rewards achieving this pay‐off, if each
of you can foresee that the net gain from cooperating over time outweighs the foregone
gain of taking advantage of another’s cooperation:

The main idea behind the theory of repeated games is that if the game is
played repeatedly then the mutually desirable outcome in which [coopera-
tion] occurs in every period is stable if each player believes that a defection
will terminate the cooperation, resulting in a subsequent loss for him that
outweighs the short term gain. (Osborne and Rubinstein 1994: 133)
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Tit-for-Tat

› Consider these strategies in an indefinitely repeated prisoner’s dilemma [Reiss (2013),
p. 60:

Defect Always defect (confess)
Cooperate Always cooperate (stonewall)
Tit‐for‐tat Cooperate on the first round of the repeated game; on round 𝑛 + 1 do

whatever the other player did on round 𝑛.
› Defect is the Nash equilibrium strategy in the one‐shot game; each round, Defectors
end up with no less than 2 utiles, and may end up with close to 4 on average if they play
lots of Cooperators.

› Cooperators end up with no more than 3 utiles, and may end up with close to 1 on
average if they play lots of Defectors.

› Tit‐for‐Tat plays like a Cooperator against Cooperators, and a Defector against
Defectors. It typically does better than either, taking advantage of the excess utility
generated by mutual cooperation over mutual defection.
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Evolutionary Game Theory (Peterson 2017: §12.5)

› If we suppose that the strategies played are not rationally chosen but rather genetically
heritable, and we suppose that the pay‐offs correlate with reproductive success, we
have evolutionary game theory.

› Here, a population consists of players with fixed strategies who interact with each other
with certain probabilities.

› The key idea is of an evolutionarily stable strategy (Maynard‐Smith 1982), which is a
strategy that provides better outcomes for those who play it when played against itself
than when played against any other strategy, and which is the best strategy to play
against itself.
» Such a strategy is stable, since it can never be driven to extinction in the population – if

the numbers who play it get low, it encounters mostly strategies when it does better; if the
numbers who play it get high, it encounters mostly itself, and it still does better.

› The key result is that cooperation can be an ESS. In a version of the ultimatum game,
Skyrms shows that the one‐shot irrational strategy of ‘offer half ’ can emerge to take over
the whole population (Skyrms 1996).
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Backward Induction

› What if the game is repeated a known finite number of times?
› The situation changes drastically: cooperation does not emerge rationally, as can be
seen by the backward induction argument (Reiss 2013: 60; Hausman, McPherson, and
Satz 2017: 280–81).

› Suppose a PD is to be played 100 times.
» On the last round, rational players know this is the last round. There is no incentive to

cooperate for future reward; this is a one‐shot game, and rational players defect.
» On the second last round, rational players know that on the last round everyone will

defect. So they know cooperation on the second last round will not be rewarded; so they
should defect on that round too.

» Likewise for every other round: everyone will rationally always defect, from the very first
round.

› Players who reason this way end up with an average pay‐off of ~2 on each round; players
who treat 100 as if it is infinity average a pay‐off of ~3 over each round.
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Playing the Irrational

› Given that the rational strategy in a finitely repeated prisoner’s dilemma is to defect,
what should Jill do if the person she is playing against, Jack, cooperates?

Jack’s first move decisively refutes Jill’s view of the game. It demonstrates
that [there cannot be common knowledge of rationality]. But what if Jack’s
move ismotivatedby his knowing thatmaking a cooperativemovewill post
this perplexing problem for Jill and that such amovemay thus induce Jill to
cooperate in order to take advantage of Jack’s apparent ‘irrationality’! … It
is hard to tell a convincing story of how a player should work out a suitable
strategic response to contingencies that ought not to arise if all the players
are rational and well schooled in game theory. (Hausman, McPherson, and
Satz 2017: 282)
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Further Topics

› This has barely scratched the surface of game theory and its significance, particularly
for the rationality of cooperative social behaviour (Skyrms 1996).

› We haven’t considered games where players choose their strategy over time rather than
all at once; here the idea of binding oneself to a strategy is important (Hausman,
McPherson, and Satz 2017: 283–85).
» Consider here nuclear deterrence: the rational response to a first strike is not to retaliate

(what’s the point?), but deterrence requires that one make a credible threat of making the
irrational response (Lewis 1986)!

› Nor have we considered extensively games where the players can bargain, and secure
prior agreements to trust one another (Hausman, McPherson, and Satz 2017: §14.5).
» Obviously such agreements can make securing the desired outcome in Stag Hunt and the

PD much simpler, and they’ve also been used in solving problems about how to allocate
scarce resources between groups with competing interests: clearly important for issues of
distributive justice.
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